Излагается авторская теория и методы количественного анализа рыночного (коллективного) потребительского спроса, построенная на основе научного подхода к объекту реального экономического интереса - потребительскому рынку. Аксиомы рациональности формальной неоклассической теории индивидуального спроса приняты как гипотезы относительно коллективной рациональности, верифицируемыми по данным торговой статистики. При этом сохраняются модельный аппарат и неоклассическая теория, но представляющие не индивида, а реальный исследуемый рынок. Представлена теория формульных (бинарных) и аналитических индексов рыночного спроса (индексов А. А. Конюса, учитывающих потребительские предпочтения). Классический параметрический метод наименьших квадратов и непараметрический метод Африата - Вэриана используются для построения коллективной функции предпочтения.Учебное пособие предназначено для бакалавров, магистров и аспирантов направлений экономики, бизнес-информатики и прикладной математики и может использоваться в рамках дисциплины "Экономико-математическое моделирование".
Izlagaetsja avtorskaja teorija i metody kolichestvennogo analiza rynochnogo (kollektivnogo) potrebitelskogo sprosa, postroennaja na osnove nauchnogo podkhoda k obektu realnogo ekonomicheskogo interesa - potrebitelskomu rynku. Aksiomy ratsionalnosti formalnoj neoklassicheskoj teorii individualnogo sprosa prinjaty kak gipotezy otnositelno kollektivnoj ratsionalnosti, verifitsiruemymi po dannym torgovoj statistiki. Pri etom sokhranjajutsja modelnyj apparat i neoklassicheskaja teorija, no predstavljajuschie ne individa, a realnyj issleduemyj rynok. Predstavlena teorija formulnykh (binarnykh) i analiticheskikh indeksov rynochnogo sprosa (indeksov A. A. Konjusa, uchityvajuschikh potrebitelskie predpochtenija). Klassicheskij parametricheskij metod naimenshikh kvadratov i neparametricheskij metod Afriata - Veriana ispolzujutsja dlja postroenija kollektivnoj funktsii predpochtenija.Uchebnoe posobie prednaznacheno dlja bakalavrov, magistrov i aspirantov napravlenij ekonomiki, biznes-informatiki i prikladnoj matematiki i mozhet ispolzovatsja v ramkakh distsipliny "Ekonomiko-matematicheskoe modelirovanie".